Course Offerings

Fall 2017

See complete information about these courses in the course offerings database. For more information about a specific course, including course type, schedule and location, click on its title.

Introduction to Behavioral Ecology

BIOL 105 - Marsh, David M.

How do animals experience the world? What are animal social systems like? How do animals choose mates, find places to live, decide when to help others? This course for non-majors focuses on both the mechanisms of animal behavior (genes, hormones, sensory systems) and the adaptive value of behavior for survival and reproduction in nature. The laboratory includes field experiments and lab observations that test hypotheses using animals such as salamanders, cows, birds, and humans. Credit does not apply toward the biology major. Laboratory course.

Fundamentals of Biology

BIOL 111 - Blythe, Sarah N.

An intensive investigation of scientific thought and communication applied to topics that vary among sections and terms. Specific subjects, chosen from within the scope of modern biological investigation according to the expertise of individual instructors, are examined in the context of major concepts such as evolution, regulation, growth, and metabolism. This course, and its companion laboratory, are prerequisites for all higher level biology courses.

Fall 2016, BIOL 111-01: Fundamentals of Biology: Biological Clocks and Rhythms (3). Corequisite: BIOL 113. An intensive investigation of scientific thought and communication, examined in the context of major concepts such as evolution, regulation, growth, and metabolism. From cell division to bird migration, clock-like rhythms control the activities of every living organism. In this section we investigate recent advances in chronobiology, the area of biology that studies internal biological clocks. Our topics include the measurement of rhythmic activity, the molecular mechanisms underlying daily rhythms, and the integration of internal and environmental rhythms in complex physiological processes, such as the sleep and reproductive cycles. (SL: BIOL 113 is a co-requisite for students seeking laboratory science credits.) Toporikova.

Fundamentals of Biology

BIOL 111 - Hamilton, Eugene W., III (Bill)

An intensive investigation of scientific thought and communication applied to topics that vary among sections and terms. Specific subjects, chosen from within the scope of modern biological investigation according to the expertise of individual instructors, are examined in the context of major concepts such as evolution, regulation, growth, and metabolism. This course, and its companion laboratory, are prerequisites for all higher level biology courses.

Fundamentals of Biology

BIOL 111 - Hurd, Lawrence E. (Larry)

An intensive investigation of scientific thought and communication applied to topics that vary among sections and terms. Specific subjects, chosen from within the scope of modern biological investigation according to the expertise of individual instructors, are examined in the context of major concepts such as evolution, regulation, growth, and metabolism. This course, and its companion laboratory, are prerequisites for all higher level biology courses.

Fall 2016, BIOL 111-03: Fundamentals of Biology: Rapid Communication in Animals (3). Corequisite: BIOL 113. An intensive investigation of scientific thought and communication, examined in the context of major concepts such as evolution, regulation, growth, and metabolism. This section examines the structure and function of nerve cells with an emphasis on electrical excitability, synaptic transmission, and sensory transduction. As part of the background, we study the processes of replication, transcription, and translation. In addition, we study the anatomy of the brain and examine the cellular mechanisms underlying simple behaviors and the pathology of degenerative CNS diseases. (SL: BIOL 113 is a co-requisite for students seeking laboratory science credits.) Watson.

Fundamentals of Biology

BIOL 111 - Simurda, Maryanne C.

An intensive investigation of scientific thought and communication applied to topics that vary among sections and terms. Specific subjects, chosen from within the scope of modern biological investigation according to the expertise of individual instructors, are examined in the context of major concepts such as evolution, regulation, growth, and metabolism. This course, and its companion laboratory, are prerequisites for all higher level biology courses.

Biology Laboratory

BIOL 113 - Winder, Charles T.

A laboratory course to accompany BIOL 111. Students are trained in basic techniques of biological research by demonstrations and investigatory exercises, including data analysis and scientific communication.

Biology Laboratory

BIOL 113 - Lanier, Leah S.

A laboratory course to accompany BIOL 111. Students are trained in basic techniques of biological research by demonstrations and investigatory exercises, including data analysis and scientific communication.

Data Science: Visualizing and Exploring Big Data

BIOL 185 - Whitworth, Gregg B.

No prior programming experience required. We live in the era of Big Data. Major discoveries in science and medicine are being made by exploring large datasets in novel ways using computational tools. The challenge in the biomedical sciences is the same as in Silicon Valley: knowing what computational tools are right for a project and where to get started when exploring large data sets. In this course, students learn to use R, a popular open-source programming language and data analysis environment, to interactively explore data. Case studies are drawn from across the sciences and medicine. Topics include data visualization, machine learning, image analysis, geospatial analysis, and statistical inference on large data sets. We also emphasize best practices in coding, data handling, and adherence to the principles of reproducible research. Fulfills the computer science requirement for biology and neuroscience majors.

Statistics for Biology and Medicine

BIOL 201 - Toporikova, Natalia

This course examines the principles of statistics and experimental design for biological and medical research. The focus is on the practical and conceptual aspects of statistics, rather than mathematical derivations. Students completing this class will be able to read and understand research papers, to design realistic experiments, and to carry out their own statistical analyses using computer packages.

Human Parasitology

BIOL 210 - Simurda, Maryanne C.

A survey of the phenomenon of animal parasitism, including discussion of the chief distinguishing structures, life cycles, and functions of major pathogenic parasites infecting humans and other animals.

Aquatic Ecology

BIOL 217 - Humston, Robert

This course provides a comprehensive introduction to the ecology of freshwater systems, with laboratory emphasis on streams and rivers in the local area. It includes a review of the physical and biological properties of freshwater ecosystems as well as current issues relating to their conservation. Laboratory activities focus around monitoring the impacts of current stream restoration efforts in local watersheds.

Genetics

BIOL 220 - Ayoub, Nadia A.

A study of the three main branches of modern genetics: 1) Mendelian genetics, the study of the transmission of traits from one generation to the next; 2) molecular genetics, a study of the chemical structure of genes and how they operate at the molecular level; and 3) population genetics, the study of the variation of genes between and within populations. This course is a prerequisite to most 300-level courses in biology.

Genetics

BIOL 220 - Cabe, Paul R.

A study of the three main branches of modern genetics: 1) Mendelian genetics, the study of the transmission of traits from one generation to the next; 2) molecular genetics, a study of the chemical structure of genes and how they operate at the molecular level; and 3) population genetics, the study of the variation of genes between and within populations. This course is a prerequisite to most 300-level courses in biology.

Genetics Laboratory

BIOL 221 - Cabe, Paul R.

Techniques in modern molecular genetics.

Genetics Laboratory

BIOL 221 - Ayoub, Nadia A.

Techniques in modern molecular genetics.

Immunology

BIOL 350 - Simurda, Maryanne C.

A study of the structural and functional aspects of the immune system from the perspective of cellular and developmental biology; the biochemical and structural properties of antibodies and the possible origins of their diversity; and immunopathology.

Microanatomy

BIOL 355 - I'Anson, Helen

A study of the normal microscopic structure of the mammalian body with emphasis placed on structural and functional correlations. Laboratory work includes the study of prepared tissue and the preparation of tissues for microscopy. Laboratory course.

Developmental Biology

BIOL 365 - Watson, Fiona L.

An examination of the goals, practices, and accomplishments of contemporary developmental biology. Topics include gametogenesis, fertilization, cleavage, gastrulation, organogenesis, genetic control of cell differentiation, transgenic procedures, cloning, embryo manipulation, and stem cells. Lectures, discussions of the developmental literature, and electronic media are utilized. Laboratory sessions focus on experimental manipulations of early invertebrate and vertebrate embryos and emphasize student-designed research projects. Laboratory course.

Molecular Mechanics of Life

BIOL 385 - Whitworth, Gregg B.

How do we study complex networks of interactions between molecules in cells? How do we discover what roles different molecular machines play in the development and behavior of cells and animals? How can we identify the ways in which medical illness is caused by the misregulation of biological complexes because of a pathogenic infection or genetic disease? Our approach to answering these questions reflects the same interdisciplinary strategy being used at the forefront of current biomedical research. We consider the ways in which traditional approaches in biochemistry, genetics and cell biology can be merged with new systems-level approaches such as genomics and proteomics, to allow us to probe the underlying molecular mechanics of life. In the classroom, we examine different molecular networks, while readings include selections from the primary literature. The laboratory is based on an investigation of a novel research question, designed and addressed by student participants. Laboratory course

Selected Topics in Ecology and Evolution

BIOL 398 - Hurd, Lawrence E. (Larry)

Topics include ecology, behavior, evolution, and natural history of selected taxonomic groups. May be repeated for degree credit if the topics are different.

Fall 2017, BIOL 398-01: Topic: Ecology and Conservation (3). Prerequisites: BIOL 220 and permission of the instructor.   What is biodiversity, how did it come about, and what is its future?  How do ecological systems work, and how (and why) can we conserve biodiversity in the Anthropocene? The recognition that global biological diversity is threatened with a precipitous decline of a magnitude similar to the past five mass extinctions, by human activities, has stimulated much ecological research.  We explore major ecological concepts and how they relate to biodiversity by reading and analyzing the primary research literature.  Following a lecture portion of the course to introduce major concepts, students will prepare oral presentations of research based in the primary literature, both assigned and of their choice. Hurd.

Directed Individual Research

BIOL 421 - Hamilton, Eugene W., III (Bill)

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credits of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 421 - I'Anson, Helen

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credits of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 421 - Toporikova, Natalia

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credits of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 421 - Marsh, David M.

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credits of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 421 - Ayoub, Nadia A.

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credits of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 421 - Humston, Robert

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credits of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 422 - Hamilton, Eugene W., III (Bill)

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department Web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credit hours of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 422 - I'Anson, Helen

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department Web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credit hours of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 422 - Ayoub, Nadia A.

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department Web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credit hours of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 422 - Toporikova, Natalia

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department Web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credit hours of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 422 - Cabe, Paul R.

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department Web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credit hours of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 422 - Humston, Robert

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department Web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credit hours of work at the 400 level may apply toward the major.

Spring 2017

See complete information about these courses in the course offerings database. For more information about a specific course, including course type, schedule and location, click on its title.

Environmental Biology: Endangered Plants of the Appalachians

BIOL 101 - Winder, Charles T.

Using case studies in plant endangerment as a focal point for understanding ecological and evolutionary processes and the impact of human activities on biodiversity, students gain fundamental insight into their relationship with the living world and the importance of preserving biological diversity through a combination of targeted readings, intensive discussions, and basic research in the field, Field activities take place in regional hotspots of plant endemism and give students experience in applied conservation research. Field sites and subject species vary from year to year.

CSI: W&L

BIOL 160 - Watson, Fiona L. / LaRiviere, Frederick J. (Fred)

This laboratory course is an introduction to the field of forensic science with a focus on the physical, chemical, and biological basis of crime scene evidence. A particular emphasis is on the analysis of trace physical (e.g., glass, soil, fiber, ballistics) and biological (e.g., hair, blood, DNA) evidence and forensic toxicology (e.g., drugs, alcohol, poisons). The laboratory portion of this course provides "hands-on" opportunities to analyze collected crime scene samples and to utilize some of the commonly used forensic laboratory techniques such as microscopy, chromatography, and spectroscopy. The course also introduces some of the legal aspects associated with collection and analysis of crime-scene evidence. Laboratory course.

Field Ornithology

BIOL 241 - Cabe, Paul R.

This course integrates studies of bird biology with field observation and identification of local bird species. Topics covered include anatomy, taxonomy, reproduction, vocalization, migration, ecology, and evolution. Field trips to a variety of areas throughout Virginia emphasize identification skills and basic field research techniques. No other course may be taken concurrently. Laboratory course.

Field Herpetology

BIOL 242 - Marsh, David M.

Field Herpetology is a research-based course on the ecology and behavior of amphibians and reptiles. Research projects vary from year-to-year and are designed to give students plenty of time on the field and exposure to a diverse assortment of amphibian and reptile species. Students should be prepared for hiking off-trail, wading in swamps, and catching live animals.

Ecological Modeling and Conservation Strategies

BIOL 325 - Humston, Robert

This course is an intensive introduction to foundational methods in ecological modeling and their application, with emphasis on the dynamics of exploited or threatened populations and developing strategies for effective conservation. Topics include managing harvested populations, population viability analysis, individual based models, and simulation modeling for systems analyses. Laboratory course.

Plant Functional Ecology

BIOL 332 - Hamilton, Eugene W., III (Bill)

The emphasis and location of the study area differs from year to year. Information regarding the specific course topic and field trip schedule is made available in the fall. Through novel research projects in a variety of field settings (e.g., on-campus, Appalachian and Blue Ridge Mountains, The Greater Yellowstone Ecosystem), this field-based laboratory course covers topics which investigate the vital roles that plants play in shaping Earth's ecosystems. Topics focus on the responses of native plants to environmental stresses, such as global climate change (elevated temperature and carbon dioxide and drought), herbivory, and invasive species. Field and laboratory exercises focus on testing hypotheses through experiments using a variety of species from intact plant communities. A review of the pertinent literature is used to develop and conduct a term research project. Laboratory course.

Experimental Neurophysiology

BIOL 360 - Blythe, Sarah N.

An in-depth exploration of the theory and techniques of cellular neurophysiology. Labs utilize extracellular and intracellular recording techniques to explore motor neuron and sensory receptor firing properties and to examine the ionic basis for resting and action potentials and synaptic transmission. Laboratory course.

Directed Individual Study

BIOL 401 - Humston, Robert

Reading in the primary research literature on a selected topic under the direction of a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). May be repeated for degree credit if the topics are different. No more than six credit hours of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 424 - Hamilton, Eugene W., III (Bill)

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department Web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credit hours of work at the 400 level may apply toward the major.

Richmond Clinical Rotation Program

BIOL 464 - Wubah, Judith A.

This program is for students who have demonstrated an interest in a career in medicine. The Richmond Term Program combines an introductory experience in a medical practice with academic study of Immunology and infectious disease. It exposes the students to the process and problems of medicine through observations, seminars, and discussions. This is a faculty-supervised, off-campus experience with various physicians in Richmond, VA. This course does not meet major requirements.

Winter 2017

See complete information about these courses in the course offerings database. For more information about a specific course, including course type, schedule and location, click on its title.

Fundamentals of Biology

BIOL 111 - Humston, Robert / Rowe, Barbara L.

An intensive investigation of scientific thought and communication applied to topics that vary among sections and terms. Specific subjects, chosen from within the scope of modern biological investigation according to the expertise of individual instructors, are examined in the context of major concepts such as evolution, regulation, growth, and metabolism. This course, and its companion laboratory, are prerequisites for all higher level biology courses.

Winter 2017, BIOL 111-01: Fundamentals of Biology: Biology of Marine Organisms (3). Corequisite: BIOL 113. An intensive investigation of scientific thought and communication, examined in the context of major concepts such as evolution, regulation, growth, and metabolism. In this section, we examine specific examples of the unique biology of marine organisms and ecosystems, building upon fundamental concepts to explore advanced topics and research. Why are coral reefs dying? Why don't sharks get cancer - or do they? We follow lines of scientific inquiry that have brought us to the current state of understanding on these and other specific examples. In the process, we progress through different levels of organization, generally starting with molecular / cellular biology and moving up through population and community ecology. This course, and its companion laboratory, are prerequisites for all higher level biology courses. (SL when taken with BIOL 113). Humston.

Fundamentals of Biology

BIOL 111 - Cabe, Paul R.

An intensive investigation of scientific thought and communication applied to topics that vary among sections and terms. Specific subjects, chosen from within the scope of modern biological investigation according to the expertise of individual instructors, are examined in the context of major concepts such as evolution, regulation, growth, and metabolism. This course, and its companion laboratory, are prerequisites for all higher level biology courses.

Winter 2017, BIOL 111-02: Fundamentals of Biology: Human Genetic Testing (3). Corequisite: BIOL 113. An intensive investigation of scientific thought and communication, examined in the context of major concepts such as evolution, regulation, growth, and metabolism. The explosive growth of genetics and genomics offers unprecedented possibilities for genetic testing in humans.  In medicine, are we entering an age of "personal genomics?"  Why are tests done, and what do the results mean?  How can forensic testing give compelling answers in a legal context?  We will explore the basics of molecular genetics, and use this foundation to understand human genetic testing in medical, forensic, and ancestry applications. This course, and its companion laboratory, are prerequisites for all higher level biology courses. (SL: BIOL 113 is a co-requisite for students seeking laboratory science credits.) Cabe.

Winter 2017, BIOL 111-3: Fundamentals of Biology: Drugs of Abuse (3). Corequisite: BIOL 113. An intensive investigation of scientific thought and communication, examined in the context of major concepts such as evolution, regulation, growth, and metabolism. In this section, we use addiction as a model for understanding basic principles of genetics, cell biology, anatomy, and physiology. An in-depth discussion of the common mechanisms of action of addictive substances is included, as well as relevant information about treatment and recovery strategies. This course, and its companion laboratory, are prerequisites for all higher level biology courses. (SL when taken with BIOL 113). Blythe.

Fundamentals of Biology

BIOL 111 - Blythe, Sarah N.

An intensive investigation of scientific thought and communication applied to topics that vary among sections and terms. Specific subjects, chosen from within the scope of modern biological investigation according to the expertise of individual instructors, are examined in the context of major concepts such as evolution, regulation, growth, and metabolism. This course, and its companion laboratory, are prerequisites for all higher level biology courses.

Fundamentals of Biology

BIOL 111 - Marsh, David M.

An intensive investigation of scientific thought and communication applied to topics that vary among sections and terms. Specific subjects, chosen from within the scope of modern biological investigation according to the expertise of individual instructors, are examined in the context of major concepts such as evolution, regulation, growth, and metabolism. This course, and its companion laboratory, are prerequisites for all higher level biology courses.

Winter 2017, BIOL 111-04: Fundamentals of Biology: Disease Ecology (3). Corequisite: BIOL 113 . An intensive investigation of scientific thought and communication, examined in the context of major concepts such as evolution, regulation, growth, and metabolism. This course gives a holistic view of disease and its effects on human and animal populations throughout history. We learn about disease dynamics from the genetic level to the epidemiological level by focusing on pathogens such as Ebola, lyme disease, and MRSA. This course, and its companion laboratory, are prerequisites for all higher-level biology courses. (SL: BIOL 113 is a co-requisite for students seeking laboratory science credits.) Marsh.

Biology Laboratory

BIOL 113 - Winder, Charles T.

A laboratory course to accompany BIOL 111. Students are trained in basic techniques of biological research by demonstrations and investigatory exercises, including data analysis and scientific communication.

Biology Laboratory

BIOL 113 - Lanier, Leah S.

A laboratory course to accompany BIOL 111. Students are trained in basic techniques of biological research by demonstrations and investigatory exercises, including data analysis and scientific communication.

Data Science: Visualizing and Exploring Big Data

BIOL 185 - Whitworth, Gregg B.

No prior programming experience required. We live in the era of Big Data. Major discoveries in science and medicine are being made by exploring large datasets in novel ways using computational tools. The challenge in the biomedical sciences is the same as in Silicon Valley: knowing what computational tools are right for a project and where to get started when exploring large data sets. In this course, students learn to use R, a popular open-source programming language and data analysis environment, to interactively explore data. Case studies are drawn from across the sciences and medicine. Topics include data visualization, machine learning, image analysis, geospatial analysis, and statistical inference on large data sets. We also emphasize best practices in coding, data handling, and adherence to the principles of reproducible research. Fulfills the computer science requirement for biology and neuroscience majors.

Topics in Biology

BIOL 195A - Hamilton, Eugene W., III (Bill)

Topics vary with instructor and term. May be repeated for degree credit if the topics are different.

Winter 2017, BIOL 195A-01: The Ecology of National Parks (3). An introduction to the ecology of the Earth's national parks starting with the first national park, Yellowstone National Park (YNP). Students learn the ecology of the temperate ecosystem that is YNP from soils to top predators. The course covers modern molecular techniques in biology and classical ecological approaches for quantifying the connections that exist within intact and broken ecosystems. Using YNP as a model, students investigate five other national parks across the Earth and conduct assessments of their biological integrity. (SC) Hamilton.

Topics in Biology

BIOL 195B - Pask, Gregory M. (Greg)

Topics vary with instructor and term. May be repeated for degree credit if the topics are different.

Winter 2017, BIOL 195B-01: Breaking Bugs: Managing Insect Pests (4). All over the world, pest insects pose a huge threat to quality of life due to their impact on agriculture and human health. The constant struggle against pests has led historically to some desperate control strategies, such as mass spraying of DDT. Advances in our understanding of insects have led to novel and more responsible control techniques, but the troubled past of pest management has led to public distrust. As we explore the science, history, economics, and ethics of integrated pest management, students evaluate the issue from the perspectives of farmers, consumers, and global health. (SL) Pask.

Statistics for Biology and Medicine

BIOL 201 - Marsh, David M.

This course examines the principles of statistics and experimental design for biological and medical research. The focus is on the practical and conceptual aspects of statistics, rather than mathematical derivations. Students completing this class will be able to read and understand research papers, to design realistic experiments, and to carry out their own statistical analyses using computer packages.

Cell Biology

BIOL 211 - Watson, Fiona L.

This course will focus on understanding the components of a cell, the internal organization of a cell, how they move, how they function, how they respond to cues from their external environment, and the limits of our current knowledge. Lecture topics will include the internal organization of a cell, structure and function of DNA, RNA and proteins, membrane and cytoskeleton structure function, protein sorting, membrane transport, cell cycle and cell-cycle control, cell signaling and communication, and cell death. The lab component reinforces the lecture by emphasizing the experimental approaches to the study of cell biology. Laboratory course.

Biochemistry of the Cell

BIOL 215 - Whitworth, Gregg B.

A study of the molecular basis of cell structure and function. Topics include biomolecular structure and chemistry, enzyme kinetics and inhibition, bioenergetics, intermediary metabolism and its regulation, membrane structure and transport, membrane receptors and signal transduction, and the endomembrane system. The laboratory stresses techniques for use in current biochemical research. Laboratory course.

Virology

BIOL 223 - Simurda, Maryanne C.

A study of those obligate intracellular parasites known as viruses, that infect both prokaryotic and eukaryotic cells, including viral structure, mode of infection and replication, regulation of viral life cycle. Discussions include viral diseases in humans.

Zoology

BIOL 240 - Hurd, Lawrence E. (Larry)

Form and function of animals with emphasis on evolution and ecology of major invertebrate and vertebrate groups. Laboratory course.

Anatomy and Physiology

BIOL 260 - Blythe, Sarah N.

An introduction to the structure, function, and homeostasis of the major organ systems of humans. Laboratory exercises include basic histology, dissection of the cat with comparisons to human anatomy, and physiology of the cardiovascular, respiratory, and urinary systems. Laboratory course.

Seminar in Biology

BIOL 295A - Hamilton, Eugene W., III (Bill)

Seminar topics vary with instructor and term. Sample topics include: genetics, molecular genetics, virology, evolutionary biology, history of medicine, biology of aging, ecology, cancer, reproductive strategies, neuroendocrinology, microbiology and immunology. These are in-depth studies of restricted topics within the broad areas indicated by the titles, involving critical review of literature, discussion and oral and/or written presentation. May be repeated for degree credit if the topics are different.

Winter 2017, BIOL 295A-01: Topics in Biology: Yellowstone Ecology (1). Prerequisites: BIOL 111 and 113, junior standing, and instructor consent. This course examines the interactions of microbes, plants and animals in the world's oldest national park Through weekly readings, discussions, presentations and written works we cover topics including soil microbes, grazing, fire, predators, and ecosystem function. This course is a pre-requisite for BIOL 332 Plant Functional Ecology which goes to Yellowstone in Spring term and priority is given to students planning to enroll in BIOL 332. Hamilton

Microbiology

BIOL 310 - Simurda, Maryanne C.

A broadly based course in the study of microorganisms, specifically: prokaryotic cells, microbial diversity, and the effects of microbes in the world, in society and in the bodies of animals and plants. It concerns the central role of microbiology as a basic biological science that enhances our understanding of the biology of higher organisms. Laboratory course.

Conservation Genetics

BIOL 322 - Cabe, Paul R.

A study of the central issues of population genetics and their application to species preservation and conservation. Topics include genetic surveys of rare or threatened species; population structure and dispersal; inferring population histories from genetic data; phylogenetics of threatened species' groups; hybridization between species; the use of genetic data in captive breeding programs and the prosecution of endangered species legislation; and the use of biotechnologies, such as cloning.

Evolution

BIOL 340 - Hurd, Lawrence E. (Larry)

An examination of the evidence for evolution and the mechanisms by which evolution occurs.

Animal Physiology

BIOL 362 - I'Anson, Helen

A comparative study of functional processes of animals, primarily vertebrates, and their environmental interactions. Laboratory emphasis is on functional adaptations and the use of physiological instrumentation in measuring functional processes. Laboratory course.

Selected Topics in Cellular and Molecular Biology

BIOL 396A - Pask, Gregory M. (Greg)

Topics include genetics, virology, cell biology and microbiology. May be repeated for degree credit if the topics are different.

Winter 2017, BIOL 396A-01: Selected Topics in Cellular and Molecular Biology: Receptor Pharmacology and Physiology (3). Prerequisites: BIOL 220 and at least junior standing. This course is focused on the wide range of receptors and channels that make up biological membranes. These proteins lie at the interface between chemical signals and cells, and are critical for cellular communication, neuronal connectivity, and sensory transduction, and some have even been co-opted for cutting edge neuroscience research. These interactions drive the pharmaceutical industry, and the role of membrane proteins in the quality of human life is a recurring theme. After thoroughly engaging in the primarily literature of the field, we learn to summarize and communicate exciting new findings to a wide range of audiences. Pask.

Directed Individual Study

BIOL 401 - I'Anson, Helen

Reading in the primary research literature on a selected topic under the direction of a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). May be repeated for degree credit if the topics are different. No more than six credit hours of work at the 400 level may apply toward the major.

Directed Individual Study

BIOL 401 - Whitworth, Gregg B.

Reading in the primary research literature on a selected topic under the direction of a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). May be repeated for degree credit if the topics are different. No more than six credit hours of work at the 400 level may apply toward the major.

Directed Individual Study

BIOL 402 - Simurda, Maryanne C.

Reading in the primary research literature on a selected topic under the direction of a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). May be repeated for degree credit if the topics are different. No more than six credit hours of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 421 - Hamilton, Eugene W., III (Bill)

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credits of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 421 - Ayoub, Nadia A.

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credits of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 421 - Humston, Robert

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credits of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 421 - Whitworth, Gregg B.

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credits of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 421 - Toporikova, Natalia

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credits of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 421 - Winder, Charles T.

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credits of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 421 - Simurda, Maryanne C.

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credits of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 422 - Hamilton, Eugene W., III (Bill)

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department Web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credit hours of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 422 - Cabe, Paul R.

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department Web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credit hours of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 422 - Ayoub, Nadia A.

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department Web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credit hours of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 422 - Humston, Robert

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department Web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credit hours of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 422 - Whitworth, Gregg B.

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department Web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credit hours of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 422 - Toporikova, Natalia

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department Web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credit hours of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 422 - I'Anson, Helen

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department Web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credit hours of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 423 - Pask, Gregory M. (Greg)

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department Web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credit hours of work at the 400 level may apply toward the major.

Directed Individual Research

BIOL 423 - Watson, Fiona L.

Each student conducts primary research in partnership with a faculty member, by prior mutual agreement and according to departmental guidelines (available from biology faculty). Consult the department Web page or individual faculty for a description of current research areas. May be repeated for degree credit if the topics are different. No more than six credit hours of work at the 400 level may apply toward the major.